Search results
Results from the WOW.Com Content Network
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.
It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes.
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, an orange, or an ...
Pages in category "Logistic regression" The following 15 pages are in this category, out of 15 total. ... Multinomial logistic regression; O. Ordered logit; S ...
This is later generalized for multi-class classification, with multinomial logistic regression experts. [15] One paper proposed mixture of softmaxes for autoregressive language modelling. [16] Specifically, consider a language model that given a previous text , predicts the next word .
Multinomial logistic regression and multinomial probit regression for categorical data. Ordered logit and ordered probit regression for ordinal data. Single index models [ clarification needed ] allow some degree of nonlinearity in the relationship between x and y , while preserving the central role of the linear predictor β ′ x as in the ...
In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L 1 and L 2 penalties of the lasso and ridge methods. Nevertheless, elastic net regularization is typically more accurate than both methods with regard to reconstruction. [1]