Search results
Results from the WOW.Com Content Network
In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object. The mathematical concept of infinity refines and extends the old philosophical concept, in particular by introducing infinitely many different sizes of infinite sets.
The infinity symbol (∞) is a mathematical symbol representing the concept of infinity. This symbol is also called a lemniscate , [ 1 ] after the lemniscate curves of a similar shape studied in algebraic geometry , [ 2 ] or "lazy eight", in the terminology of livestock branding .
The absolute infinite (symbol: Ω), in context often called "absolute", is an extension of the idea of infinity proposed by mathematician Georg Cantor.It can be thought of as a number that is bigger than any other conceivable or inconceivable quantity, either finite or transfinite.
In philosophy and theology, infinity is explored in articles under headings such as the Absolute, God, and Zeno's paradoxes. In Greek philosophy , for example in Anaximander , 'the Boundless' is the origin of all that is.
Actual infinity is to be contrasted with potential infinity, in which an endless process (such as "add 1 to the previous number") produces a sequence with no last element, and where each individual result is finite and is achieved in a finite number of steps.
The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...
(infinity symbol) 1. The symbol is read as infinity. As an upper bound of a summation, an infinite product, an integral, etc., means that the computation is unlimited. Similarly, in a lower bound means that the computation is not limited toward negative values. 2.
This definition allows a limit to be defined at limit points of the domain S, if a suitable subset T which has the same limit point is chosen. Notably, the previous two-sided definition works on , which is a subset of the limit points of S.