Search results
Results from the WOW.Com Content Network
With the arithmetic operations defined above, ¯ is not even a semigroup, let alone a group, a ring or a field as in the case of . However, it has several convenient properties: + (+) and (+) + are either equal or both undefined.
Collectively they form the group PGL(2, R). The projectivities which are their own inverses are called involutions. A hyperbolic involution has two fixed points. Two of these correspond to elementary, arithmetic operations on the real projective line: negation and reciprocation. Indeed, 0 and ∞ are fixed under negation, while 1 and −1 are ...
The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...
We can define arithmetic operations on cardinal numbers that generalize the ordinary operations for natural numbers. It can be shown that for finite cardinals, these operations coincide with the usual operations for natural numbers. Furthermore, these operations share many properties with ordinary arithmetic.
In mathematics, the Riemann sphere, named after Bernhard Riemann, [1] is a model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity.
In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0). The sequence continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3).
A wheel is an algebraic structure (,,, +,, /), in which . is a set, and are elements of that set, + and are binary operations, / is a unary operation, and satisfying the following properties:
A visualization of the surreal number tree. In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number.