enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    The function f is continuous at p if and only if the limit of f(x) as x approaches p exists and is equal to f(p). If f : M → N is a function between metric spaces M and N, then it is equivalent that f transforms every sequence in M which converges towards p into a sequence in N which converges towards f(p).

  3. Infinity - Wikipedia

    en.wikipedia.org/wiki/Infinity

    On the other hand, this kind of infinity enables division by zero, namely / = for any nonzero complex number . In this context, it is often useful to consider meromorphic functions as maps into the Riemann sphere taking the value of at the poles. The domain of a complex-valued function may be extended to include the point at infinity as well.

  4. L-infinity - Wikipedia

    en.wikipedia.org/wiki/L-infinity

    is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.

  5. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    A function () is meromorphic at infinity if it is meromorphic in some neighbourhood of infinity (that is outside some disk), and there is an integer n such that exists and is a nonzero complex number.

  7. Infinite-dimensional vector function - Wikipedia

    en.wikipedia.org/wiki/Infinite-dimensional...

    Most theorems on integration and differentiation of scalar functions can be generalized to vector-valued functions, often using essentially the same proofs.Perhaps the most important exception is that absolutely continuous functions need not equal the integrals of their (a.e.) derivatives (unless, for example, is a Hilbert space); see Radon–Nikodym theorem

  8. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    On the other hand, the function / cannot be continuously extended, because the function approaches as approaches 0 from below, and + as approaches 0 from above, i.e., the function not converging to the same value as its independent variable approaching to the same domain element from both the positive and negative value sides.

  9. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.