enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Extended real number line - Wikipedia

    en.wikipedia.org/wiki/Extended_real_number_line

    With the arithmetic operations defined above, ¯ is not even a semigroup, let alone a group, a ring or a field as in the case of . However, it has several convenient properties: + (+) and (+) + are either equal or both undefined.

  3. Projectively extended real line - Wikipedia

    en.wikipedia.org/wiki/Projectively_extended_real...

    Collectively they form the group PGL(2, R). The projectivities which are their own inverses are called involutions. A hyperbolic involution has two fixed points. Two of these correspond to elementary, arithmetic operations on the real projective line: negation and reciprocation. Indeed, 0 and ∞ are fixed under negation, while 1 and −1 are ...

  4. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The aleph numbers differ from the infinity (∞) commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...

  5. Riemann sphere - Wikipedia

    en.wikipedia.org/wiki/Riemann_sphere

    In mathematics, the Riemann sphere, named after Bernhard Riemann, [1] is a model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity.

  6. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0). The sequence continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3).

  7. Wheel theory - Wikipedia

    en.wikipedia.org/wiki/Wheel_theory

    A wheel is an algebraic structure (,,, +,, /), in which . is a set, and are elements of that set, + and are binary operations, / is a unary operation, and satisfying the following properties:

  8. Order (group theory) - Wikipedia

    en.wikipedia.org/wiki/Order_(group_theory)

    For example, in the symmetric group shown above, where ord(S 3) = 6, the possible orders of the elements are 1, 2, 3 or 6. The following partial converse is true for finite groups: if d divides the order of a group G and d is a prime number, then there exists an element of order d in G (this is sometimes called Cauchy's theorem).

  9. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    That is, one can perform operations (addition, subtraction, multiplication) using the usual operation on integers, followed by reduction modulo p. For instance, in GF(5), 4 + 3 = 7 is reduced to 2 modulo 5. Division is multiplication by the inverse modulo p, which may be computed using the extended Euclidean algorithm.