Search results
Results from the WOW.Com Content Network
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
Aerenchyma in stem cross section of a typical wetland plant. Aerenchyma or aeriferous parenchyma [1] or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. [2]
SV channels have been shown to function as cation channels that are permeable to Ca 2+ ions, [35] but their exact functions are not yet known in plants. [39] Guard cells control gas exchange and ion exchange through opening and closing. K+ is one ion that flows both into and out of the cell, causing a positive charge to develop.
Stoma in a tomato leaf shown via colorized scanning electron microscope image A stoma in horizontal cross section The underside of a leaf. In this species (Tradescantia zebrina) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments.
The stomata complex regulates the exchange of gases and water vapor between the outside air and the interior of the leaf. Typically, the stomata are more numerous over the abaxial (lower) epidermis of the leaf than the (adaxial) upper epidermis. An exception is floating leaves where most or all stomata are on the upper surface.
Aquatic arthropods generally possess some form of gills in which gas exchange takes place by diffusing through the exoskeleton. Others may breathe atmospheric air while remaining submerged, via breathing tubes or trapped air bubbles, though some aquatic insects may remain submerged indefinitely and respire using a plastron. A number of insects ...
In parallel, plant physiologists studied leaf gas exchanges using the new method of infrared gas analysis and a leaf chamber where the net photosynthetic rates ranged from 10 to 13 μmol CO 2 ·m −2 ·s −1, with the conclusion that all terrestrial plants have the same photosynthetic capacities, that are light saturated at less than 50% of ...
Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions [1] that allows a plant to photosynthesize during the day, but only exchange gases at night. In a plant using full CAM, the stomata in the leaves remain shut during the day to reduce ...