Search results
Results from the WOW.Com Content Network
In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube (see capillary action), resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and ...
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure. In capillaries, hydrostatic pressure (also known as capillary blood pressure) is higher than the opposing “colloid osmotic pressure” in blood—a “constant” pressure primarily produced by ...
Permeability: The quantity of fluid (water or hydrocarbon) that can flow through a rock as a function of time and pressure, related to how interconnected the pores are, and it is known by the symbol . [1] Formation testing is the only tool that can directly measure a rock formation's permeability down a well. [9]
Cohesion, along with adhesion (attraction between unlike molecules), helps explain phenomena such as meniscus, surface tension and capillary action. Mercury in a glass flask is a good example of the effects of the ratio between cohesive and adhesive forces.
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).
When a tube of a narrow bore, often called a capillary tube, is dipped into a liquid and the liquid wets the tube (with zero contact angle), the liquid surface inside the tube forms a concave meniscus, which is a virtually spherical surface having the same radius, r, as the inside of the tube. The tube experiences a downward force of magnitude ...