Search results
Results from the WOW.Com Content Network
Quickhull is a method of computing the convex hull of a finite set of points in n-dimensional space. It uses a divide and conquer approach similar to that of quicksort , from which its name derives.
Chan's algorithm is used for dimensions 2 and 3, and Quickhull is used for computation of the convex hull in higher dimensions. [ 9 ] For a finite set of points, the convex hull is a convex polyhedron in three dimensions, or in general a convex polytope for any number of dimensions, whose vertices are some of the points in the input set.
A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.
Category: Convex hull algorithms. ... Quickhull; V. Visual hull This page was last edited on 22 January 2021, at 02:27 (UTC). Text is available under the Creative ...
In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space. The algorithm takes O ( n log h ) {\displaystyle O(n\log h)} time, where h {\displaystyle h} is the number of vertices of the output (the convex ...
The lower convex hull of points in the plane appears, in the form of a Newton polygon, in a letter from Isaac Newton to Henry Oldenburg in 1676. [71] The term "convex hull" itself appears as early as the work of Garrett Birkhoff , and the corresponding term in German appears earlier, for instance in Hans Rademacher's review of Kőnig .
A particularly simple algorithm for this problem was published by Graham & Yao (1983) and Lee (1983). Like the Graham scan algorithm for convex hulls of point sets, it is based on a stack data structure. The algorithm traverses the polygon in clockwise order, starting from a vertex known to be on the convex hull (for instance, its leftmost point).
Carathéodory's theorem (convex hull) - If a point x of R d lies in the convex hull of a set P, there is a subset of P with d+1 or fewer points such that x lies in its convex hull. Choquet theory - an area of functional analysis and convex analysis concerned with measures with support on the extreme points of a convex set C.