Search results
Results from the WOW.Com Content Network
The regular skew polyhedron {4,5| 4} can be realized within the 5-cube, with its 32 vertices, 80 edges, and 40 square faces, and the other 40 square faces of the 5-cube become square holes. This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex .
5-polytopes may be classified based on properties like "convexity" and "symmetry".A 5-polytope is convex if its boundary (including its cells, faces and edges) does not intersect itself and the line segment joining any two points of the 5-polytope is contained in the 5-polytope or its interior; otherwise, it is non-convex.
In 5-dimensional geometry, the 5-cube 5-orthoplex compound [1] is a polytope compound composed of a regular 5-cube and dual regular 5-orthoplex. [2] A compound polytope is a figure that is composed of several polytopes sharing a common center.
The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2. #
In five-dimensional geometry, a runcinated 5-cube is a convex uniform 5-polytope that is a runcination (a 3rd order truncation) of the regular 5-cube. There are 8 unique degrees of runcinations of the 5-cube, along with permutations of truncations and cantellations. Four are more simply constructed relative to the 5-orthoplex.
This polytope is based on the 5-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.. There are 23 uniform 5-polytopes that can be constructed from the D 5 symmetry of the 5-demicube, of which are unique to this family, and 15 are shared within the 5-cube family.
In five-dimensional geometry, a truncated 5-cube is a convex uniform 5-polytope, being a truncation of the regular 5-cube. There are four unique truncations of the 5-cube. Vertices of the truncated 5-cube are located as pairs on the edge of the 5-cube. Vertices of the bitruncated 5-cube are located on the square faces of the 5-cube.
This category contains polytopes of 5-space, and honeycombs of 4-space. Pages in category "5-polytopes" The following 67 pages are in this category, out of 67 total ...