enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    [1] [2] The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. [3] [4]

  3. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The steeper the bank, the greater the g-forces. This top-fuel dragster can accelerate from zero to 160 kilometres per hour (99 mph) in 0.86 seconds. This is a horizontal acceleration of 5.3 g. Combining this with the vertical g-force in the stationary case using the Pythagorean theorem yields a g-force of 5.4 g.

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...

  5. Shock (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Shock_(mechanics)

    Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity). The unit g (or g) represents multiples of the standard acceleration of gravity and is conventionally used.

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Using the integral form of Gauss's Law, this formula can be extended to any pair of objects of which one is far more massive than the other — like a planet relative to any man-scale artifact. The distances between planets and between the planets and the Sun are (by many orders of magnitude) larger than the sizes of the sun and the planets.

  7. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Assuming SI units, F is measured in newtons (N), m 1 and m 2 in kilograms (kg), r in meters (m), and the constant G is 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. [12] The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798 ...

  8. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.

  9. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...