Search results
Results from the WOW.Com Content Network
The wave equation is a second-order linear partial differential equation for the description of waves or ... the tension force ... (where the wave speed is c 1) ...
A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
The vibrations of the membrane are given by the solutions of the two-dimensional wave equation with Dirichlet boundary conditions which represent the constraint of the frame. It can be shown that any arbitrarily complex vibration of the membrane can be decomposed into a possibly infinite series of the membrane's normal modes.
with T the wave period (the reciprocal of the frequency f, T=1/f). So in deep water the phase speed increases with the wavelength, and with the period. Since the phase speed satisfies c p = λ/T = λf, wavelength and period (or frequency) are related. For instance in deep water:
Surface tension Wind wave: 60–150 m (200–490 ft) ... In both formulas the wave speed is proportional to the square root of the wavelength. ... Mild-slope equation ...
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
Wave characteristics. Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by √ gh as a function of h / λ . A: phase velocity, B: group velocity, C: phase and group velocity √ gh valid in shallow water.