Search results
Results from the WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
The following equation illustrates the relation between shear rate and shear stress for a fluid with laminar flow only in the direction x: =, where: τ x y {\displaystyle \tau _{xy}} is the shear stress in the components x and y, i.e. the force component on the direction x per unit surface that is normal to the direction y (so it is parallel to ...
The relation between the surface tension and angular velocity of a droplet can be obtained in different ways. One of them involves considering the total mechanical energy of the droplet as the summation of its kinetic energy and its surface energy:
Therefore, the continuity equation for an incompressible fluid reduces further to: = This relationship, =, identifies that the divergence of the flow velocity vector is equal to zero (), which means that for an incompressible fluid the flow velocity field is a solenoidal vector field or a divergence-free vector field.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The earliest study on the relationship between contact angle and surface tensions for sessile droplets on flat surfaces was reported by Thomas Young in 1805. [2] A century later Gibbs [3] proposed a modification to Young's equation to account for the volumetric dependence of the contact angle. Gibbs postulated the existence of a line tension ...
In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore ...
In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different, and can even be time-dependent.