Search results
Results from the WOW.Com Content Network
In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "
For example, the equations = = form a parametric representation of the unit circle, where t is the parameter: A point (x, y) is on the unit circle if and only if there is a value of t such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a ...
Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a focus of calculus .
The parametrization is regular for the given values of the parameters if the vectors , are linearly independent. The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface
Poloidal direction (red arrow) and toroidal direction (blue arrow) A torus of revolution in 3-space can be parametrized as: [2] (,) = (+ ) (,) = (+ ) (,) = using angular coordinates θ, φ ∈ [0, 2π), representing rotation around the tube and rotation around the torus's axis of revolution, respectively, where the major radius R is the distance from the center of the tube to ...
The locus of points such that the sum of the squares of the distances to the given points is constant is a circle, whose centre is at the centroid of the given points. [22] A generalisation for higher powers of distances is obtained if under n {\displaystyle n} points the vertices of the regular polygon P n {\displaystyle P_{n}} are taken. [ 23 ]
An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.
Laguerre defined the power of a point P with respect to an algebraic curve of degree n to be the sum of the distances from the point to the intersections of a circle through the point with the curve, divided by the nth power of the diameter d. Laguerre showed that this number is independent of the diameter (Laguerre 1905).