Search results
Results from the WOW.Com Content Network
In the embryo, root phloem develops independently in the upper hypocotyl, which lies between the embryonic root, and the cotyledon. [20] In an adult, the phloem originates, and grows outwards from, meristematic cells in the vascular cambium. Phloem is produced in phases. Primary phloem is laid down by the apical meristem and develops from the ...
Sugars are actively loaded into the phloem and moved by a positive pressure flow created by solute concentrations and turgor pressure between xylem and phloem vessel elements (specialized plant cells). This movement of sugars is referred to as translocation. When sugars arrive at the sink they are unloaded for storage or broken down/metabolized ...
English: This is an annotated diagram of translocation of sucrose within the phloem. This happens within a plant during photosynthesis. The annotations within the diagram detail the flow of water and other solutes in the phloem caused by the concentration gradient.
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.
The phloem sugar is consumed by cellular respiration or converted into starch, which is insoluble and exerts no osmotic effect. With much of the sucrose having been removed, the water exits the phloem by osmosis or is drawn by transpiration into nearby xylem vessels, lowering the turgor pressure within the phloem. [4]
Phloem was introduced by Carl Nägeli in 1858 after the discovery of sieve elements. Since then, multiple studies have been conducted on how sieve elements function in phloem in terms of working as a transport mechanism. [2] An example of analysis of phloem through sieve elements was conducted in the study of Arabidopsis leaves.
Cross section of celery stalk, showing vascular bundles, which include both phloem and xylem Detail of the vasculature of a bramble leaf Translocation in vascular plants. Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem ...
The cells of the vascular cambium (F) divide to form phloem on the outside, located beneath the bundle cap (E), and xylem (D) on the inside. Most of the vascular cambium is here in vascular bundles (ovals of phloem and xylem together) but it is starting to join these up as at point F between the bundles.