Search results
Results from the WOW.Com Content Network
There are several approaches to understanding reflections, but the relationship of reflections to the conservation laws is particularly enlightening. A simple example is a step voltage, () (where is the height of the step and () is the unit step function with time ), applied to one end of a lossless line, and consider what happens when the line is terminated in various ways.
p2mm: TRHVG (translation, 180° rotation, horizontal line reflection, vertical line reflection, and glide reflection) Formally, a frieze group is a class of infinite discrete symmetry groups of patterns on a strip (infinitely wide rectangle), hence a class of groups of isometries of the plane, or of a strip.
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.
For example, the point P1 in the example representing a reflection coefficient of has a normalised impedance of = +. To graphically change this to the equivalent normalised admittance point, say Q1, a line is drawn with a ruler from P1 through the Smith chart centre to Q1, an equal radius in the opposite direction.
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
In a Euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane. Some mathematicians use "flip" as a synonym for "reflection". [2 ...
This has the effect of reflecting the plane in the line L, called the reflection axis or the associated mirror. Glide reflections, denoted by G L,d, where L is a line in R 2 and d is a distance. This is a combination of a reflection in the line L and a translation along L by a distance d.