enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to produce because of the large amount of time needed to label the data. Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce ...

  3. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .

  4. Conceptual clustering - Wikipedia

    en.wikipedia.org/wiki/Conceptual_clustering

    Conceptual clustering is a machine learning paradigm for unsupervised classification that has been defined by Ryszard S. Michalski in 1980 (Fisher 1987, Michalski 1980) and developed mainly during the 1980s.

  5. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    In addition to the supervised learning setting, sample complexity is relevant to semi-supervised learning problems including active learning, [7] where the algorithm can ask for labels to specifically chosen inputs in order to reduce the cost of obtaining many labels.

  6. Competitive learning - Wikipedia

    en.wikipedia.org/wiki/Competitive_learning

    Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.

  7. Wake-sleep algorithm - Wikipedia

    en.wikipedia.org/wiki/Wake-sleep_algorithm

    R, G are weights used by the wake-sleep algorithm to modify data inside the layers. The wake-sleep algorithm [1] is an unsupervised learning algorithm for deep generative models, especially Helmholtz Machines. [2] The algorithm is similar to the expectation-maximization algorithm, [3] and optimizes the model likelihood for observed data. [4]

  8. Adaptive resonance theory - Wikipedia

    en.wikipedia.org/wiki/Adaptive_resonance_theory

    Adaptive resonance theory (ART) is a theory developed by Stephen Grossberg and Gail Carpenter on aspects of how the brain processes information.It describes a number of artificial neural network models which use supervised and unsupervised learning methods, and address problems such as pattern recognition and prediction.

  9. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.