Search results
Results from the WOW.Com Content Network
Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...
For very simple problems, say a function of two variables subject to a single equality constraint, it is most practical to apply the method of substitution. [4] The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the constraint.
where ƒ is the function to be minimized, the inequality constraints and the equality constraints, and where, respectively, , and are the indices sets of inactive, active and equality constraints and is an optimal solution of , then there exists a non-zero vector = [,,, …,] such that:
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...
In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.
This constraint is written in standard form by defining a new penalty function y(t) = a(t) − b(t). The above problem seeks to minimize the time average of an abstract penalty function p'(t)'. This can be used to maximize the time average of some desirable reward function r(t) by defining p(t) = −r('t).
The equality constraint functions :, =, …,, are affine transformations, that is, of the form: () =, where is a vector and is a scalar. The feasible set C {\displaystyle C} of the optimization problem consists of all points x ∈ D {\displaystyle \mathbf {x} \in {\mathcal {D}}} satisfying the inequality and the equality constraints.
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.