enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),

  3. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic properties of materials. These constants form the elements of the stiffness matrix in tensor notation, which relates stress to strain through linear equations in anisotropic materials.

  4. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part). 3D formulae

  5. Zener ratio - Wikipedia

    en.wikipedia.org/wiki/Zener_ratio

    Cubic materials are special orthotropic materials that are invariant with respect to 90° rotations with respect to the principal axes, i.e., the material is the same along its principal axes. Due to these additional symmetries the stiffness tensor can be written with just three different material properties like

  6. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .

  7. Stiffness matrix - Wikipedia

    en.wikipedia.org/wiki/Stiffness_matrix

    The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse. For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.

  8. Orthotropic material - Wikipedia

    en.wikipedia.org/wiki/Orthotropic_material

    Orthotropic materials are a subset of anisotropic materials; their properties depend on the direction in which they are measured. Orthotropic materials have three planes/axes of symmetry. An isotropic material, in contrast, has the same properties in every direction. It can be proved that a material having two planes of symmetry must have a ...

  9. Isotropic solid - Wikipedia

    en.wikipedia.org/wiki/Isotropic_solid

    Isotropic solids tend to be of interest when developing models for physical behavior of materials, as they tend to allow for dramatic simplifications of theory; for example, conductivity in metals of the cubic crystal system can be described with single scalar value, rather than a tensor. [1]