Search results
Results from the WOW.Com Content Network
In the C programming language, operations can be performed on a bit level using bitwise operators. Bitwise operations are contrasted by byte-level operations which characterize the bitwise operators' logical counterparts, the AND, OR, NOT operators. Instead of performing on individual bits, byte-level operators perform on strings of eight bits ...
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits.It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.
A mask is data that is used for bitwise operations, particularly in a bit field. Using a mask, multiple bits in a Byte, nibble, word (etc.) can be set either on, off or inverted from on to off (or vice versa) in a single bitwise operation. More comprehensive applications of masking, when applied conditionally to operations, are termed predication.
Augmented assignment (or compound assignment) is the name given to certain assignment operators in certain programming languages (especially those derived from C).An augmented assignment is generally used to replace a statement where an operator takes a variable as one of its arguments and then assigns the result back to the same variable.
All the operators (except typeof) listed exist in C++; the column "Included in C", states whether an operator is also present in C. Note that C does not support operator overloading. When not overloaded, for the operators && , || , and , (the comma operator ), there is a sequence point after the evaluation of the first operand.
Using a mask, multiple bits in a byte, nibble, word, etc. can be set either on or off, or inverted from on to off (or vice versa) in a single bitwise operation. An additional use of masking involves predication in vector processing , where the bitmask is used to select which element operations in the vector are to be executed (mask bit is ...
Most C and C++ implementations, and Go, choose which right shift to perform depending on the type of integer being shifted: signed integers are shifted using the arithmetic shift, and unsigned integers are shifted using the logical shift. In particular, C++ uses its logical shift operators as part of the syntax of its input and output functions ...
[1] c := b and a # This separates out all bits set in both a, b. # All these bits would carry if bits were added individually, # that is, if the bits in a, b were to be added bit-wise. b := b xor a # This clears in b the bits set in both a, b (previously saved to c), # and sets in b all the other bits set in a.