Search results
Results from the WOW.Com Content Network
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
Similarly, [3] if C is a smooth curve on the quadric surface P 1 ×P 1 with bidegree (d 1,d 2) (meaning d 1,d 2 are its intersection degrees with a fiber of each projection to P 1), since the canonical class of P 1 ×P 1 has bidegree (−2,−2), the adjunction formula shows that the canonical class of C is the intersection product of divisors ...
Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe k -dimensional linear subspaces, or flats , in an n -dimensional Euclidean ...
Labs surface, a certain septic with 99 nodes; Endrass surface, a certain surface of degree 8 with 168 nodes; Sarti surface, a certain surface of degree 12 with 600 nodes; Quotient surfaces, surfaces that are constructed as the orbit space of some other surface by the action of a finite group; examples include Kummer, Godeaux, Hopf, and Inoue ...
Every del Pezzo surface is isomorphic to either P 1 × P 1 or to the projective plane blown up in at most eight points, which must be in general position. As a result, they are all rational . In dimension 3, there are smooth complex Fano varieties which are not rational, for example cubic 3-folds in P 4 (by Clemens - Griffiths ) and quartic 3 ...
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers , an algebraic surface has complex dimension two (as a complex manifold , when it is non-singular ) and so of dimension four as a smooth manifold .
More generally, a smooth quadric (degree 2) hypersurface X of any dimension n is rational, by stereographic projection. (For X a quadric over a field k, X must be assumed to have a k-rational point; this is automatic if k is algebraically closed.) To define stereographic projection, let p be a point in X.