Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header. As with the real-valued functions, an f or l suffix denotes the float complex or long double complex variant of the function.
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
All the operators (except typeof) listed exist in C++; the column "Included in C", states whether an operator is also present in C. Note that C does not support operator overloading. When not overloaded, for the operators && , || , and , (the comma operator ), there is a sequence point after the evaluation of the first operand.
Using a residue numeral system for arithmetic operations is also called multi-modular arithmetic. Multi-modular arithmetic is widely used for computation with large integers, typically in linear algebra , because it provides faster computation than with the usual numeral systems, even when the time for converting between numeral systems is ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A third method drastically reduces the number of operations to perform modular exponentiation, while keeping the same memory footprint as in the previous method. It is a combination of the previous method and a more general principle called exponentiation by squaring (also known as binary exponentiation).