Ad
related to: drug half-life calculations worksheet
Search results
Results from the WOW.Com Content Network
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]
Caesium in the body has a biological half-life of about one to four months. Mercury (as methylmercury) in the body has a half-life of about 65 days. Lead in the blood has a half life of 28–36 days. [29] [30] Lead in bone has a biological half-life of about ten years. Cadmium in bone has a biological half-life of about 30 years.
And since is fraction of the drug that is removed per unit time measured at any particular instant, then if we divide the rate of elimination by the amount of drug in the body at time t, we get; K = d E t d t ÷ A t = ln 2 t 1 / 2 ≈ 0.693 t 1 / 2 {\displaystyle K={dE_{t} \over dt}\div A_{t}={\frac {\ln 2}{t_{1/2}}}\approx {\frac {0.693}{t ...
In pharmacology, clearance is a pharmacokinetic parameter representing the efficiency of drug elimination. This is the rate of elimination of a substance divided by its concentration. [ 1 ] The parameter also indicates the theoretical volume of plasma from which a substance would be completely removed per unit time.
For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life (in exponential growth) is doubling time. The original term, half-life period, dating to Ernest Rutherford's discovery of the principle in 1907, was shortened to half-life in the early 1950s. [1]
The model outputs for a drug can be used in industry (for example, in calculating bioequivalence when designing generic drugs) or in the clinical application of pharmacokinetic concepts. Clinical pharmacokinetics provides many performance guidelines for effective and efficient use of drugs for human-health professionals and in veterinary medicine .
An equianalgesic chart can be a useful tool, but the user must take care to correct for all relevant variables such as route of administration, cross tolerance, half-life and the bioavailability of a drug. [5] For example, the narcotic levorphanol is 4–8 times stronger than morphine, but also has a much longer half-life. Simply switching the ...
The absorption rate constant K a is a value used in pharmacokinetics to describe the rate at which a drug enters into the system. It is expressed in units of time −1. [1] The K a is related to the absorption half-life (t 1/2a) per the following equation: K a = ln(2) / t 1/2a. [1] K a values can typically only be found in research articles. [2]
Ad
related to: drug half-life calculations worksheet