Search results
Results from the WOW.Com Content Network
In mechanical and control engineering, a servomechanism (also called servo system, or simply servo) is a control system for the position and its time derivatives, such as velocity, of a mechanical system.
A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines.
The control system performance can be improved by combining the feedback (or closed-loop) control of a PID controller with feed-forward (or open-loop) control. Knowledge about the system (such as the desired acceleration and inertia) can be fed forward and combined with the PID output to improve the overall system performance.
a control computer to calculate the required control actions to maintain position and correct for position errors. thrust elements to apply forces to the ship as demanded by the control system. For most applications, the position reference systems and thrust elements must be carefully considered when designing a DP ship.
For instance, some have internal feedback so that the input signal effectively control flow or output pressure, rather than spool position. Servo valves are often used in a feedback control where the position or force on a hydraulic cylinder is measured, and fed back into a controller that varies the signal sent to the servo valve. This allows ...
Proportional control, in engineering and process control, is a type of linear feedback control system in which a correction is applied to the controlled variable, and the size of the correction is proportional to the difference between the desired value (setpoint, SP) and the measured value (process variable, PV).
Departure of such a variable from its setpoint is one basis for error-controlled regulation using negative feedback for automatic control. [3] A setpoint can be any physical quantity or parameter that a control system seeks to regulate, such as temperature, pressure, flow rate, position, speed, or any other measurable attribute.
Impedance control is an approach to dynamic control relating force and position. It is often used in applications where a manipulator interacts with its environment and the force position relation is of concern. Examples of such applications include humans interacting with robots, where the force produced by the human relates to how fast the ...