enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    For example, consider a conductor moving in the field of a magnet. [8] In the frame of the magnet, that conductor experiences a magnetic force. But in the frame of a conductor moving relative to the magnet, the conductor experiences a force due to an electric field. The motion is exactly consistent in these two different reference frames, but ...

  3. IISER Aptitude Test - Wikipedia

    en.wikipedia.org/wiki/IISER_Aptitude_Test

    IAT consists of 60 questions: 15 questions each from Biology, Chemistry, Mathematics, and Physics. Total time for answering the test is 3 hours. Questions are of multiple choice type with only one correct answer. Each correct answer is awarded 4 marks. Each incorrect answer leads to the deduction of 1 mark. Unanswered questions are awarded 0 mark.

  4. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    Jefimenko says, "...neither Maxwell's equations nor their solutions indicate an existence of causal links between electric and magnetic fields. Therefore, we must conclude that an electromagnetic field is a dual entity always having an electric and a magnetic component simultaneously created by their common sources: time-variable electric ...

  5. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.

  6. Hall effect - Wikipedia

    en.wikipedia.org/wiki/Hall_effect

    The Hall effect is the production of a potential difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current.

  7. Earnshaw's theorem - Wikipedia

    en.wikipedia.org/wiki/Earnshaw's_theorem

    Informally, the case of a point charge in an arbitrary static electric field is a simple consequence of Gauss's law.For a particle to be in a stable equilibrium, small perturbations ("pushes") on the particle in any direction should not break the equilibrium; the particle should "fall back" to its previous position.

  8. United Kingdom Mathematics Trust - Wikipedia

    en.wikipedia.org/wiki/United_Kingdom_Mathematics...

    Part B consists of 6 questions and encourages students to write out full solutions. Each question in section B is worth 10 marks and students are encouraged to write complete answers to 2-4 questions rather than hurry through incomplete answers to all 6. If the solution is judged to be incomplete, it is marked on a 0+ basis, maximum 3 marks.

  9. Gauss's law for magnetism - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_magnetism

    Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole. (If monopoles were ever found, the law would have to be modified, as elaborated below.) Gauss's law for magnetism can be written in two forms, a differential form and an integral form. These forms are equivalent due to the divergence theorem.