Search results
Results from the WOW.Com Content Network
In computer programming, an infinite loop (or endless loop) [1] [2] is a sequence of instructions that, as written, will continue endlessly, unless an external intervention occurs, such as turning off power via a switch or pulling a plug.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [33] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
In this usage, infinity is a mathematical concept, and infinite mathematical objects can be studied, manipulated, and used just like any other mathematical object. The mathematical concept of infinity refines and extends the old philosophical concept, in particular by introducing infinitely many different sizes of infinite sets.
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
There is also a distinct projectively extended real line where + and are not distinguished, i.e., there is a single actual infinity for both infinitely increasing sequences and infinitely decreasing sequences that is denoted as just or as .