Search results
Results from the WOW.Com Content Network
It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis.
The general structure of a boronic acid, where R is a substituent.. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
Pinacol is a branched alcohol which finds use in organic syntheses. It is a diol that has hydroxyl groups on vicinal carbon atoms. A white solid that melts just above room temperature, pinacol is notable for undergoing the pinacol rearrangement in the presence of acid and for being the namesake of the pinacol coupling reaction .
Compounds of the type BR n (OR) 3-n are called borinic esters (n = 2), boronic esters (n = 1), and borates (n = 0). Boronic acids are key to the Suzuki reaction. Trimethyl borate, debatably not an organoboron compound, is an intermediate in sodium borohydride production.
The Miyaura borylation has shown to work for: Alkyl halides, [2] aryl halides, [1] [3] [4] aryl halides using tetrahydroxydiboron, [5] aryl halides using bis-boronic acid, [6] aryl triflates, [7] aryl mesylates, [8] vinyl halides, [9] vinyl halides of α,β-unsaturated carbonyl compounds, [10] and vinyl triflates.
Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general ...
The pinacol reaction is extremely well-studied and tolerates many different reductants, including electrochemical syntheses.Variants are known for homo- and cross-coupling, intra- and inter-molecular reactions with appropriate diastereo- or enantioselectivity; [2] as of 2006, the only unsettled frontier was enantioselective cross-coupling of aliphatic aldehydes. [3]
Basic heteroaromatic boronic acids (boronic acids that contain a basic nitrogen atom, such as 2-pyridine boronic acid) display additional protodeboronation mechanisms. [4] A key finding shows the speciation of basic heteroaromatic boronic acids to be analogous to that of simple amino acids , with zwitterionic species forming under neutral pH ...