Search results
Results from the WOW.Com Content Network
A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation. [1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds ...
The gravitational wave signal matched prediction for the merger of two neutron stars, two seconds before the gamma-ray burst. The gravitational wave signal, which had a duration of about 100 seconds, was the first gravitational wave detection of the merger of two neutron stars. [1] [19] [20] [21] [22]
The first identification of r-process elements in a neutron star merger was obtained during a re-analysis of GW170817 spectra. [77] The spectra provided direct proof of strontium production during a neutron star merger. This also provided the most direct proof that neutron stars are made of neutron-rich matter.
When two neutron stars orbit each other closely, they spiral inward as time passes due to gravitational radiation. When they meet, their merger leads to the formation of either a heavier neutron star or a black hole, depending on whether the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit. This creates a magnetic field that ...
In July 2019, astronomers reported that a new method to determine the Hubble constant, and resolve the discrepancy of earlier methods, has been proposed based on the mergers of pairs of neutron stars, following the detection of the neutron star merger of GW170817. [108] [109] Their measurement of the Hubble constant is 70.3 +5.3 −5.0 (km/s ...
One of the prime targets for these are gamma-ray bursts; these are thought to be associated with supernovae ("long" bursts, lasting more than 2 seconds) and with compact binary coalescences involving neutron stars ("short" bursts). [87] The merger of two neutron stars in particular has been confirmed to be associated with both a gamma-ray burst ...
PSR J1946+2052 is a short-period binary pulsar system located 11,000–14,000 light-years (3,500–4,200 pc) away from Earth in the constellation Vulpecula.The system consists of a pulsar and a neutron star orbiting around their common center of mass every 1.88 hours, which is the shortest orbital period among all known double neutron star systems as of 2022.
In June 2020, astronomers reported details of a compact binary merging, in the "mass gap" of cosmic collisions, of a first-ever 2.50–2.67 M ☉ "mystery object", either an extremely heavy neutron star (that was theorized not to exist) or a too-light black hole, with a 22.2–24.3 M ☉ black hole, that was detected as the gravitational wave GW190814.