enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.

  3. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    where C is the capacitance of the capacitor. Solving this equation for V yields the formula for exponential decay: =, where V 0 is the capacitor voltage at time t = 0. The time required for the voltage to fall to ⁠ V 0 / e ⁠ is called the RC time constant and is given by, [1]

  4. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    An example is the capacitance of a capacitor constructed of two parallel plates both of area separated by a distance . If d {\textstyle d} is sufficiently small with respect to the smallest chord of A {\textstyle A} , there holds, to a high level of accuracy: C = ε A d ; {\displaystyle \ C=\varepsilon {\frac {A}{d}};}

  5. Electrical susceptance - Wikipedia

    en.wikipedia.org/wiki/Electrical_susceptance

    As a result, device admittance is frequency-dependent, and the simple electrostatic formula for capacitance, = , is not applicable. A more general definition of capacitance, encompassing electrostatic formula, is: [6]

  6. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]

  7. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  8. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.

  9. Cable theory - Wikipedia

    en.wikipedia.org/wiki/Cable_theory

    This is in contrast to R m (in Ω·m 2) and C m (in F/m 2), which represent the specific resistance and capacitance respectively of one unit area of membrane (in m 2). Thus, if the radius, a , of the axon is known, [ b ] then its circumference is 2 πa , and its r m , and its c m values can be calculated as: