enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deoxyribose - Wikipedia

    en.wikipedia.org/wiki/Deoxyribose

    The absence of the 2′ hydroxyl group in deoxyribose is apparently responsible for the increased mechanical flexibility of DNA compared to RNA, which allows it to assume the double-helix conformation, and also (in the eukaryotes) to be compactly coiled within the small cell nucleus. The double-stranded DNA molecules are also typically much ...

  3. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  4. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    From the DNA double helix model, it was clear that there must be some correspondence between the linear sequences of nucleotides in DNA molecules to the linear sequences of amino acids in proteins. The details of how sequences of DNA instruct cells to make specific proteins was worked out by molecular biologists during the period from 1953 to 1965.

  5. Molecular models of DNA - Wikipedia

    en.wikipedia.org/wiki/Molecular_models_of_DNA

    The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA. Another type of DNA model is the space-filling, or CPK, model.

  6. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    Here, the single-stranded DNA curls around in a long circle stabilized by telomere-binding proteins. [68] At the very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA and base pairing to one of the two strands.

  7. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    In most cases, naturally occurring DNA molecules are double-stranded and RNA molecules are single-stranded. [19] There are numerous exceptions, however—some viruses have genomes made of double-stranded RNA and other viruses have single-stranded DNA genomes, [20] and, in some circumstances, nucleic acid structures with three or four strands ...

  8. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.

  9. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    The structure of the DNA double helix (type B-DNA). The atoms in the structure are color-coded by element and the detailed structures of two base pairs are shown in the bottom right. DNA exists as a double-stranded structure, with both strands coiled together to form the characteristic double helix.