Search results
Results from the WOW.Com Content Network
In cyclic photophosphorylation, cytochrome b 6 f uses electrons and energy from PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions. The net-reaction of all light-dependent reactions in oxygenic photosynthesis ...
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
The other pathway, non-cyclic photophosphorylation, is a two-stage process involving two different chlorophyll photosystems in the thylakoid membrane. First, a photon is absorbed by chlorophyll pigments surrounding the reaction core center of photosystem II.
C 4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack. [1] C 4 fixation is an addition to the ancestral and more common C 3 carbon fixation.
Using this cyclic electron chain around photosystem one (PS I), chlororespiration compensates for the lack of light. This cyclic pathway also allows electrons to re-enter the PQ pool through NAD(P)H enzyme activity and production, which is then used to supply ATP molecules (energy) to plant cells. [7]
If electrons only pass through once, the process is termed noncyclic photophosphorylation, but if they pass through PSI and the proton pump multiple times it is called cyclic photophosphorylation. When the electron reaches photosystem I, it fills the electron deficit of light-excited reaction-center chlorophyll P700 + of PSI.
Alarm photosynthesis represents a photosynthetic variant to be added to the well-known C4 and CAM pathways. However, alarm photosynthesis, in contrast to these pathways, operates as a biochemical pump that collects carbon from the organ interior (or from the soil) and not from the atmosphere. [35] [36]
Cyclic electron transport or cyclic photophosphorylation produces only ATP. The noncyclic variety involves the participation of both photosystems, while the cyclic electron flow is dependent on only photosystem I. Photosystem I uses light energy to reduce NADP + to NADPH + H +, and is active in both noncyclic and cyclic electron transport. In ...