enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

  3. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    The cross product occurs frequently in the study of rotation, where it is used to calculate torque and angular momentum. It can also be used to calculate the Lorentz force exerted on a charged particle moving in a magnetic field. The dot product is used to determine the work done by a constant force.

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry; Kronecker product or tensor product, the generalization to any size of the ...

  7. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The scalar and vector part of this Hamilton product corresponds to the negative of dot product and cross product of the two vectors. In 1881, Josiah Willard Gibbs, [10] and independently Oliver Heaviside, introduced the notation for both the dot product and the cross product using a period (a ⋅ b) and an "×" (a × b), respectively, to denote ...

  8. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.

  9. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The dot product operator involving vectors is a good example of a covector. To illustrate, assume we have a covector defined as v ⋅ {\displaystyle \mathbf {v} \ \cdot } , where v {\displaystyle \mathbf {v} } is a vector.