Search results
Results from the WOW.Com Content Network
Memory-mapped I/O is preferred in IA-32 and x86-64 based architectures because the instructions that perform port-based I/O are limited to one register: EAX, AX, and AL are the only registers that data can be moved into or out of, and either a byte-sized immediate value in the instruction or a value in register DX determines which port is the source or destination port of the transfer.
Each non-bridge PCI device function can implement up to 6 BARs, each of which can respond to different addresses in I/O port and memory-mapped address space. Each BAR describes a region [2] [1] that is between 16 bytes and 2 gigabytes in size, located below the 4 gigabyte address space limit. If a platform supports the "Above 4G" option in ...
For system architectures in which port I/O is a distinct address space from the memory address space, an IOMMU is not used when the CPU communicates with devices via I/O ports. In system architectures in which port I/O and memory are mapped into a suitable address space, an IOMMU can translate port I/O accesses.
Memory-mapped I/O, an alternative to port I/O; a communication between CPU and peripheral device using the same instructions, and same bus, as between CPU and memory; Virtual memory, technique which gives an application program the impression that it has contiguous working memory, while in fact it is physically fragmented and may even overflow ...
In contrast, in direct memory access (DMA) operations, the CPU is uninvolved in the data transfer. The term can refer to either memory-mapped I/O (MMIO) or port-mapped I/O (PMIO). PMIO refers to transfers using a special address space outside of normal memory, usually accessed with dedicated instructions, such as IN and OUT in x86 architectures.
The main difference between System V shared memory (shmem) and memory mapped I/O (mmap) is that System V shared memory is persistent: unless explicitly removed by a process, it is kept in memory and remains available until the system is shut down. mmap'd memory is not persistent between application executions (unless it is backed by a file).
An alternative method is via instruction-based I/O which requires that a CPU have specialized instructions for I/O. [1] Both input and output devices have a data processing rate that can vary greatly. [2] With some devices able to exchange data at very high speeds direct access to memory (DMA) without the continuous aid of a CPU is required. [2]
Special function registers are in the upper area of addressable memory, from address 0x80 to 0xFF. This area of memory cannot be used for data or program storage, but is instead a series of memory-mapped ports and registers. All port input and output can therefore be performed by memory move operations on specified addresses in the SFR region.