Search results
Results from the WOW.Com Content Network
Confocal endoscopy, or confocal laser endomicroscopy (CLE), is a modern imaging technique that allows the examination of real-time microscopic and histological features inside the body. In the word "endomicroscopy", endo- means "within" and -skopein means "to view or observe".
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
Scanning confocal electron microscopy (SCEM) is an electron microscopy technique analogous to scanning confocal optical microscopy (SCOM). In this technique, the studied sample is illuminated by a focussed electron beam, as in other scanning microscopy techniques, such as scanning transmission electron microscopy or scanning electron microscopy.
In confocal Raman microscopy, the diameter of the confocal aperture is an additional factor. As a rule of thumb, the lateral spatial resolution can reach approximately the laser wavelength when using air objective lenses, while oil or water immersion objectives can provide lateral resolutions of around half the laser wavelength.
Confocal microscopy summarizes as imaging/resolving a thin slice through an object and rejecting out of focus light that comes from outside this slice. Confocal imaging enables higher image signal to noise and higher resolution than the more commonly applied epi-fluorescence microscopy. Depending on the instrument confocality is achieved via ...
Confocal microscopy was then introduced in 1960 which decreased the background and exposure time of the sample by directing light to a pinpoint and illuminating cones of light into the sample. In the 1980s, the introduction of TIRFM further decreased background and exposure time by only illuminating the thin section of the sample being examined ...
A 4Pi microscope is a laser scanning fluorescence microscope with an improved axial resolution.With it the typical range of the axial resolution of 500–700 nm can be improved to 100–150 nm, which corresponds to an almost spherical focal spot with 5–7 times less volume than that of standard confocal microscopy.
The signal can be acquired with a camera in wide-field operation (a, b) or by point detection in confocal arrangement (c, d). Interferometric scattering microscopy ( iSCAT ) refers to a class of methods that detect and image a subwavelength object by interfering the light scattered by it with a reference light field.