Search results
Results from the WOW.Com Content Network
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
Confocal endoscopy, or confocal laser endomicroscopy (CLE), is a modern imaging technique that allows the examination of real-time microscopic and histological features inside the body. In the word "endomicroscopy", endo- means "within" and -skopein means "to view or observe".
STED microscopy is one of several types of super resolution microscopy techniques that have recently been developed to bypass the diffraction limit of light microscopy to increase resolution. STED is a deterministic functional technique that exploits the non-linear response of fluorophores commonly used to label biological samples in order to ...
Scanning confocal electron microscopy (SCEM) is an electron microscopy technique analogous to scanning confocal optical microscopy (SCOM). In this technique, the studied sample is illuminated by a focussed electron beam, as in other scanning microscopy techniques, such as scanning transmission electron microscopy or scanning electron microscopy.
Download as PDF; Printable version; In other projects ... Pages in category "Scientific techniques" ... Confocal microscopy;
In confocal Raman microscopy, the diameter of the confocal aperture is an additional factor. As a rule of thumb, the lateral spatial resolution can reach approximately the laser wavelength when using air objective lenses, while oil or water immersion objectives can provide lateral resolutions of around half the laser wavelength.
The signal can be acquired with a camera in wide-field operation (a, b) or by point detection in confocal arrangement (c, d). Interferometric scattering microscopy ( iSCAT ) refers to a class of methods that detect and image a subwavelength object by interfering the light scattered by it with a reference light field.
By virtue of the linearity property of optical non-coherent imaging systems, i.e., . Image(Object 1 + Object 2) = Image(Object 1) + Image(Object 2). the image of an object in a microscope or telescope as a non-coherent imaging system can be computed by expressing the object-plane field as a weighted sum of 2D impulse functions, and then expressing the image plane field as a weighted sum of the ...