enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass near the M87* black hole is converted into a very energetic astrophysical jet, stretching five thousand light years. In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement.

  3. Annus mirabilis papers - Wikipedia

    en.wikipedia.org/wiki/Annus_Mirabilis_papers

    The Einsteinhaus on the Kramgasse in Bern, Einstein's residence at the time. Most of the papers were written in his apartment on the first floor above the street level. At the time the papers were written, Einstein did not have easy access to a complete set of scientific reference materials, although he did regularly read and contribute reviews to Annalen der Physik.

  4. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).

  5. Albert Einstein - Wikipedia

    en.wikipedia.org/wiki/Albert_Einstein

    The Einstein-de Haas experiment is the only experiment concived, realized and published by Albert Einstein himself. A complete original version of the Einstein-de Haas experimental equipment was donated by Geertruida de Haas-Lorentz , wife of de Haas and daughter of Lorentz, to the Ampère Museum in Lyon France in 1961 where it is currently on ...

  6. Unified field theory - Wikipedia

    en.wikipedia.org/wiki/Unified_field_theory

    By 1905, Albert Einstein had used the constancy of the speed-of-light in Maxwell's theory to unify our notions of space and time into an entity we now call spacetime. In 1915, he expanded this theory of special relativity to a description of gravity, general relativity , using a field to describe the curving geometry of four-dimensional (4D ...

  7. Classical unified field theories - Wikipedia

    en.wikipedia.org/wiki/Classical_unified_field...

    When the equivalent of Maxwell's equations for electromagnetism is formulated within the framework of Einstein's theory of general relativity, the electromagnetic field energy (being equivalent to mass as defined by Einstein's equation E=mc 2) contributes to the stress tensor and thus to the curvature of space-time, which is the general ...

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Einstein Triangle. The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0.

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The extended form by Albert Einstein requires special relativity to also hold in free fall and requires the weak equivalence to be valid everywhere. This form was a critical input for the development of the theory of general relativity. The strong form requires Einstein's form to work for stellar objects.