Search results
Results from the WOW.Com Content Network
Specifically, stereographic projection from the north pole (0,1) onto the x-axis gives a one-to-one correspondence between the rational number points (x, y) on the unit circle (with y ≠ 1) and the rational points of the x-axis. If ( m / n , 0) is a rational point on the x-axis, then its inverse stereographic projection is the point
For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...
Let the points on the circle be a sequence of coordinates of the vector to the point (in the usual basis). Points are numbered according to the order in which drawn, with n = 1 {\displaystyle n=1} assigned to the first point ( r , 0 ) {\displaystyle (r,0)} .
Using point plotting, one associates an ordered pair of real numbers (x, y) with a point in the plane in a one-to-one manner. As a result, one obtains the 2-dimensional Cartesian coordinate system . To be able to plot points, one needs to first decide on a point in plane which will be called the origin , and a couple of perpendicular lines ...
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...