Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
Activator binds to an inducer and the complex binds to the activation sequence and activates target gene. [2] Removing the inducer stops transcription. [2] Because a small inducer molecule is required, the increased expression of the target gene is called induction. [2] The lactose operon is one example of an inducible system. [2]
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
Under conditions of stress, a transcription activator protein binds to the response element and stimulates transcription. If the same response element sequence is located in the control regions of different genes, then these genes will be activated by the same stimuli, thus producing a coordinated response.
The maltose operon is an example of a positive control of transcription. [1] When maltose is not present in E. coli, no transcription of the maltose genes will occur, and there is no maltose to bind to the maltose activator protein.
This is a biological circuit where a simple repressor or promoter is introduced to facilitate creation of the product, or inhibition of a competing pathway. However, with the limited understanding of cellular networks and natural circuitry, implementation of more robust schemes with more precise control and feedback is hindered.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Regulatory proteins, including repressors, corepressors, and activators, usually bind specifically to the regulatory sequences of a given operon; by some definitions, the genes that code for these regulatory proteins are also considered part of the operon. operon network organelle