Search results
Results from the WOW.Com Content Network
As a metal, titanium is recognized for its high strength-to-weight ratio. [17] It is a strong metal with low density that is quite ductile (especially in an oxygen-free environment), [11] lustrous, and metallic-white in color. [19]
Titanium alone is a strong, light metal. It is stronger than common, low-carbon steels, but 45% lighter. It is also twice as strong as weak aluminium alloys but only 60% heavier. Titanium has outstanding corrosion resistance to seawater, and thus is used in propeller shafts, rigging and other parts of boats that are exposed to seawater.
Titanium Metals Corporation, or most commonly referred to as TIMET, a shortened version of "TItanium METals" that is a registered company trademark. TIMET, founded in 1950, is an American manufacturer of titanium -based metals products, focusing primarily on the aerospace industry headquartered in Warrensville Heights, Ohio .
The +4 oxidation state dominates titanium chemistry, [1] but compounds in the +3 oxidation state are also numerous. [2] Commonly, titanium adopts an octahedral coordination geometry in its complexes, [3] [4] but tetrahedral TiCl 4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of ...
Pages in category "Titanium" The following 15 pages are in this category, out of 15 total. This list may not reflect recent changes. ...
Titanium is considered the most biocompatible metal due to its resistance to corrosion from bodily fluids, bio-inertness, capacity for osseointegration, and high fatigue limit. Titanium's ability to withstand the harsh bodily environment is a result of the protective oxide film that forms naturally in the presence of oxygen.
In a closed vessel, the metal reacts with iodine at temperatures above 500 °C forming metal(IV) iodide; at a tungsten filament of nearly 2000 °C the reverse reaction happens and the iodine and metal are set free. The metal forms a solid coating on the tungsten filament and the iodine can react with additional metal resulting in a steady turnover.
The tiny droplets are spherical and measure between 50 and 350 μm. The TGA process has been used to produce a wide variety of materials such as commercially pure (CP) titanium, conventional alpha-beta and beta alloys. [5] In plasma atomization (PA) process, a titanium wire is atomized by 3 inert gas plasma jets to form spherical metal powders.