Search results
Results from the WOW.Com Content Network
In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under them.
Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...
Affine transformation (Euclidean geometry) Bäcklund transform; Bilinear transform; Box–Muller transform; Burrows–Wheeler transform (data compression) Chirplet transform; Distance transform; Fractal transform; Gelfand transform; Hadamard transform; Hough transform (digital image processing) Inverse scattering transform; Legendre ...
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system.
In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...
Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :
Transformation (function), concerning functions from sets to themselves. For functions in the broader sense, see function (mathematics). Affine transformation, in geometry; Linear transformation between modules in linear algebra. Also called a linear map. Transformation matrix which represent linear maps in linear algebra.
In plane geometry, a shear mapping is an affine transformation that displaces each point in a fixed direction by an amount proportional to its signed distance from a given line parallel to that direction. [1] This type of mapping is also called shear transformation, transvection, or just shearing.