Search results
Results from the WOW.Com Content Network
English: Linear Algebra by Jim Hefferon, along with its answers to exercises, is a text for a first undergraduate course. It is Free. It is Free. Use it as the main book, as a supplement, or for independent study.
Electromagnetic symmetries of spacetime are expressed by the Lorentz transformations, and much of the history of linear algebra is the history of Lorentz transformations. The first modern and more precise definition of a vector space was introduced by Peano in 1888; [ 5 ] by 1900, a theory of linear transformations of finite-dimensional vector ...
For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.
It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. [2] The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ( A B C ) = ( C T ⊗ A ) vec ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel .
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
Since then algebra has been dramatically enlarged to include many new subareas, and the theory of algebraic equations receives much less attention. Thus, the term "theory of equations" is mainly used in the context of the history of mathematics, to avoid confusion between old and new meanings of "algebra".