Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
The faster the relative velocity, the greater the time dilation between them, with time slowing to a stop as one clock approaches the speed of light (299,792,458 m/s). In theory, time dilation would make it possible for passengers in a fast-moving vehicle to advance into the future in a short period of their own time.
In the absence of any other forces, a particle orbiting another under the influence of Newtonian gravity follows the same perfect ellipse eternally. The presence of other forces (such as the gravitation of other planets), causes this ellipse to rotate gradually. The rate of this rotation (called orbital precession) can be measured very accurately.
But time is weird, and there's another phenomenon called relative velocity time dilation that usurps gravity's effect. Why astronauts age slower Relative velocity time dilation is where time moves ...
This gravitational frequency shift corresponds to a gravitational time dilation: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field.
Special relativity says, the faster you go, the slower time goes. If you travelled a year at 95% the speed of light; you'd age one year, and people on Earth would age 3.2 years!
The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.
In the spacetime diagram on the right, drawn for the reference frame of the Earth-based twin, that twin's world line coincides with the vertical axis (his position is constant in space, moving only in time). On the first leg of the trip, the second twin moves to the right (black sloped line); and on the second leg, back to the left.