Search results
Results from the WOW.Com Content Network
The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The angle between the horizontal line and the shown diagonal is 1 / 2 (a + b). This is a geometric way to prove the particular tangent half-angle formula that says tan 1 / 2 (a + b) = (sin a + sin b) / (cos a + cos b). The formulae sin 1 / 2 (a + b) and cos 1 / 2 (a + b) are the ratios of the actual distances to ...
Plot of f(x) = sin(2x) from − π /4 to 5 π /4; the second derivative is f″(x) = –4sin(2x), and its sign is thus the opposite of the sign of f. Tangent is blue where the curve is convex (above its own tangent), green where concave (below its tangent), and red at inflection points: 0, π /2 and π
An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles ...
In the integral , we may use = , = , = . Then, = = () = = = + = +. The above step requires that > and > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.
Illustration of the sine and tangent inequalities. The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = =
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.