Search results
Results from the WOW.Com Content Network
The lasers needed for the magneto-optical trapping of rubidium 85: (a) & (b) show the absorption (red detuned to the dotted line) and spontaneous emission cycle, (c) & (d) are forbidden transitions, (e) shows that if the cooling laser excites an atom to the = state, it is allowed to decay to the "dark" lower hyperfine, F=2 state, which would ...
In agreement with this description the photoelectron spectrum for water shows a sharp peak for the nonbonding 1b 1 MO (12.6 eV) and three broad peaks for the 3a 1 MO (14.7 eV), 1b 2 MO (18.5 eV) and the 2a 1 MO (32.2 eV). [29] The 1b 1 MO is a lone pair, while the 3a 1, 1b 2 and 2a 1 MO's can be localized to give two O−H bonds and an in-plane ...
In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. The MOT explains the paramagnetic nature of O 2, which valence bond theory cannot explain.
The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. [1] The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being connected in a different ...
2 KMnO 4 + 2 KF + 10 HF + 3 H 2 O 2 → 2 K 2 MnF 6 + 8 H 2 O + 3 O 2 ↑ 2 K 2 MnF 6 + 4 SbF 5 → 4 KSbF 6 + 2 MnF 3 + F 2 ↑. Christe later commented that the reactants "had been known for more than 100 years and even Moissan could have come up with this scheme." [178] As late as 2008, some references still asserted that fluorine was too ...
On the other hand, consider the hypothetical molecule of He 2 with the atoms labeled He' and He". As with H 2, the lowest energy atomic orbitals are the 1s' and 1s", and do not transform according to the symmetries of the molecule, while the symmetry adapted atomic orbitals do. The symmetric combination—the bonding orbital—is lower in ...
The F 2 molecule is commonly described as having exactly one bond (in other words, a bond order of 1) provided by one p electron per atom, as are other halogen X 2 molecules. However, the heavier halogens' p electron orbitals partly mix with those of d orbitals, which results in an increased effective bond order; for example, chlorine has a ...
Henri Moissan's 1892 record of fluorine gas color, viewed end-on in a 5‑m tube. Air (1) is on the left, fluorine (2) is in the middle, chlorine (3) is on the right. Fluorine forms diatomic molecules (F 2) that are gaseous at room temperature with a density about 1.3 times that of air.