Search results
Results from the WOW.Com Content Network
PyTorch is a machine learning library based on the Torch library, [4] [5] [6] used for applications such as computer vision and natural language processing, [7] originally developed by Meta AI and now part of the Linux Foundation umbrella.
In computing, CUDA is a proprietary [2] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
Torch is an open-source machine learning library, a scientific computing framework, and a scripting language based on Lua. [3] It provides LuaJIT interfaces to deep learning algorithms implemented in C. It was created by the Idiap Research Institute at EPFL. Torch development moved in 2017 to PyTorch, a port of the library to Python. [4] [5] [6]
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.
rCUDA, which stands for Remote CUDA, is a type of middleware software framework for remote GPU virtualization. Fully compatible with the CUDA application programming interface ( API ), it allows the allocation of one or more CUDA-enabled GPUs to a single application.
The Tegra APX 2500 was announced on February 12, 2008. The Tegra 6xx product line was revealed on June 2, 2008, [1] and the APX 2600 was announced in February 2009. The APX chips were designed for smartphones, while the Tegra 600 and 650 chips were intended for smartbooks and mobile Internet devices (MID).
Ada Lovelace, also referred to simply as Lovelace, [1] is a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to the Ampere architecture, officially announced on September 20, 2022.
Nvidia Tesla C2075. Offering computational power much greater than traditional microprocessors, the Tesla products targeted the high-performance computing market. [4] As of 2012, Nvidia Teslas power some of the world's fastest supercomputers, including Summit at Oak Ridge National Laboratory and Tianhe-1A, in Tianjin, China.