Search results
Results from the WOW.Com Content Network
The term Hadoop is often used for both base modules and sub-modules and also the ecosystem, [12] or collection of additional software packages that can be installed on top of or alongside Hadoop, such as Apache Pig, Apache Hive, Apache HBase, Apache Phoenix, Apache Spark, Apache ZooKeeper, Apache Impala, Apache Flume, Apache Sqoop, Apache Oozie ...
Kibble: a suite of tools for collecting, aggregating and visualizing activity in software projects. Knox: a REST API Gateway for Hadoop Services; Kudu: a distributed columnar storage engine built for the Apache Hadoop ecosystem; Kvrocks: a distributed key-value NoSQL database, supporting the rich data structure; Kylin: distributed analytics engine
Apache Hive is a data warehouse software project. It is built on top of Apache Hadoop for providing data query and analysis. [3] [4] Hive gives an SQL-like interface to query data stored in various databases and file systems that integrate with Hadoop.
HBase is an open-source non-relational distributed database modeled after Google's Bigtable and written in Java.It is developed as part of Apache Software Foundation's Apache Hadoop project and runs on top of HDFS (Hadoop Distributed File System) or Alluxio, providing Bigtable-like capabilities for Hadoop.
Its primary use is in Apache Hadoop, where it can provide both a serialization format for persistent data, and a wire format for communication between Hadoop nodes, and from client programs to the Hadoop services. Avro uses a schema to structure the data that is being encoded.
Apache Kudu is a free and open source column-oriented data store of the Apache Hadoop ecosystem. It is compatible with most of the data processing frameworks in the Hadoop environment. It provides completeness to Hadoop's storage layer to enable fast analytics on fast data.
Apache Parquet is a free and open-source column-oriented data storage format in the Apache Hadoop ecosystem. It is similar to RCFile and ORC, the other columnar-storage file formats in Hadoop, and is compatible with most of the data processing frameworks around Hadoop.
Cascading is a software abstraction layer for Apache Hadoop and Apache Flink. Cascading is used to create and execute complex data processing workflows on a Hadoop cluster using any JVM-based language (Java, JRuby, Clojure, etc.), hiding the underlying complexity of MapReduce jobs. It is open source and available under the Apache License.