Search results
Results from the WOW.Com Content Network
Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [4] The function depends on three parameters, the input x, the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
Left to right steps indicate addition whereas right to left steps indicate subtraction; If the slope of a step is positive, the term to be used is the product of the difference and the factor immediately below it. If the slope of a step is negative, the term to be used is the product of the difference and the factor immediately above it.
In the field of image processing, stairstep interpolation is a widely employed method technique for interpolating pixels after enlarging an image. The fundamental concept is to interpolate multiple times, in small increments, using any interpolation algorithm that is better than nearest-neighbor interpolation such as; bilinear interpolation, and bicubic interpolation.
The computed interpolation process is then used to insert many new values in between these key points to give a "smoother" result. In its simplest form, this is the drawing of two-dimensional curves. The key points, placed by the artist, are used by the computer algorithm to form a smooth curve either through, or near these points.
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.