Search results
Results from the WOW.Com Content Network
High-fidelity data (HiFi) includes data that was produced by a person or Stochastic Process that closely matches the operational context of interest. For example, in wing design optimization, high-fidelity data uses physical models in simulation that produce results that closely match the wing in a similar real-world setting. [5]
Modelling biological systems is a significant task of systems biology and mathematical biology. [a] Computational systems biology [b] [1] aims to develop and use efficient algorithms, data structures, visualization and communication tools with the goal of computer modelling of biological systems.
Biosimulation is a computer-aided mathematical simulation of biological processes and systems and thus is an integral part of systems biology. Due to the complexity of biological systems simplified models are often used, which should only be as complex as necessary.
Modeling and simulation (M&S) is the use of models (e.g., physical, mathematical, behavioral, or logical representation of a system, entity, phenomenon, or process) as a basis for simulations to develop data utilized for managerial or technical decision making.
A simulation is a way to implement the model, often employed when the model is too complex for the analytical solution. A steady-state simulation provides information about the system at a specific instant in time (usually at equilibrium, if such a state exists). A dynamic simulation provides information over time.
Human-in-the-loop simulation of outer space Visualization of a direct numerical simulation model. Historically, simulations used in different fields developed largely independently, but 20th-century studies of systems theory and cybernetics combined with spreading use of computers across all those fields have led to some unification and a more systematic view of the concept.
The terms computational biology and evolutionary computation have a similar name, but are not to be confused. Unlike computational biology, evolutionary computation is not concerned with modeling and analyzing biological data. It instead creates algorithms based on the ideas of evolution across species.
Another aspect of structural bioinformatics include the use of protein structures for Virtual Screening models such as Quantitative Structure-Activity Relationship models and proteochemometric models (PCM). Furthermore, a protein's crystal structure can be used in simulation of for example ligand-binding studies and in silico mutagenesis studies.