Search results
Results from the WOW.Com Content Network
In such cases, the electron transfer is termed intermolecular electron transfer. A famous example of an inner sphere ET process that proceeds via a transitory bridged intermediate is the reduction of [CoCl(NH 3) 5] 2+ by [Cr(H 2 O) 6] 2+. [5] [6] In this case, the chloride ligand is the bridging ligand that covalently connects the redox ...
Elementary steps like proton coupled electron transfer and the movement of electrons between an electrode and substrate are special to electrochemical processes. . Electrochemical mechanisms are important to all redox chemistry including corrosion, redox active photochemistry including photosynthesis, other biological systems often involving electron transport chains and other forms of ...
"Redox" is a portmanteau of the words "REDuction" and "OXidation." The term "redox" was first used in 1928. [6] Oxidation is a process in which a substance loses electrons. Reduction is a process in which a substance gains electrons. The processes of oxidation and reduction occur simultaneously and cannot occur independently. [5]
Linear plots of i p vs. ν 1/2 and peak potentials (E p) that are not dependent on ν provide evidence for an electrochemically reversible redox process. For species where the diffusion coefficient is known (or can be estimated), the slope of the plot of i p vs. ν 1/2 provides information into the stoichiometry of the redox process, the ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms.
In outer sphere redox reactions no bonds are formed or broken; only an electron transfer (ET) takes place. A quite simple example is the Fe 2+ /Fe 3+ redox reaction, the self exchange reaction which is known to be always occurring in an aqueous solution containing the aquo complexes [Fe(H 2 O) 6] 2+ and [Fe(H 2 O)6] 3+.
Inner sphere electron transfer (IS ET) or bonded electron transfer [1] is a redox chemical reaction that proceeds via a covalent linkage—a strong electronic interaction—between the oxidant and the reductant reactants. In inner sphere electron transfer, a ligand bridges the two metal redox centers during the electron transfer event. Inner ...