enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).

  3. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    The old coordinates (x, y, z) of a point Q are related to its new coordinates (x′, y′, z′) by [14] [′ ′ ′] = [⁡ ⁡ ⁡ ⁡] []. Generalizing to any finite number of dimensions, a rotation matrix A {\displaystyle A} is an orthogonal matrix that differs from the identity matrix in at most four elements.

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The rotation vector is useful in some contexts, as it represents a three-dimensional rotation with only three scalar values (its components), representing the three degrees of freedom. This is also true for representations based on sequences of three Euler angles (see below). If the rotation angle θ is zero, the axis is not uniquely defined ...

  5. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  6. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    Every rotation in 3D space has a fixed axis unchanged by rotation. The rotation is completely specified by specifying the axis of rotation and the angle of rotation about that axis. Without loss of generality, this axis may be chosen as the z-axis of a Cartesian coordinate system, allowing a simpler visualization of the rotation.

  7. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Every non-trivial rotation is determined by its axis of rotation (a line through the origin) and its angle of rotation. Rotations are not commutative (for example, rotating R 90° in the x-y plane followed by S 90° in the y-z plane is not the same as S followed by R), making the 3D rotation group a nonabelian group.

  8. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The rotation axis is sometimes called the Euler axis. The axis–angle representation is predicated on Euler's rotation theorem, which dictates that any rotation or sequence of rotations of a rigid body in a three-dimensional space is equivalent to a pure rotation about a single fixed axis. It is one of many rotation formalisms in three dimensions.

  9. Axes conventions - Wikipedia

    en.wikipedia.org/wiki/Axes_conventions

    For positive y- and z-axis, we have to face two different conventions: In case of land vehicles like cars, tanks etc., which use the ENU-system (East-North-Up) as external reference (World frame), the vehicle's (body's) positive y- or pitch axis always points to its left, and the positive z- or yaw axis always points up. World frame's origin is ...