Search results
Results from the WOW.Com Content Network
The ribosomal P-site plays a vital role in all phases of translation. Initiation involves recognition of the start codon (AUG) by initiator tRNA in the P-site, elongation involves passage of many elongator tRNAs through the P site, termination involves hydrolysis of the mature polypeptide from tRNA bound to the P-site, and ribosome recycling involves release of deacylated tRNA.
Affinity label for the tRNA binding sites on the E. coli ribosome allowed the identification of A and P site proteins most likely associated with the peptidyltransferase activity; [5] labelled proteins are L27, L14, L15, L16, L2; at least L27 is located at the donor site, as shown by E. Collatz and A.P. Czernilofsky.
However, 23S rRNA positions (G2252, A2451, U2506, and U2585) have a significant function for tRNA binding in the P site of the large ribosomal subunit. [7] These modification nucleotides in site P can inhibit peptidyl-tRNA from binding. U2555 modification can also intervene with transferring peptidyl-tRNA to puromycin.
Eukaryotic ribosomes are known to bind to transcripts in a mechanism unlike the one involving the 5' cap, at a sequence called the internal ribosome entry site. This process is not dependent on the full set of translation initiation factors (although this depends on the specific IRES) and is commonly found in the translation of viral mRNA. [9]
The ribosome can localize to the start site by direct binding, initiation factors, and/or ITAFs (IRES trans-acting factors) bypassing the need to scan the entire 5' UTR. This method of translation is important in conditions that require the translation of specific mRNAs during cellular stress, when overall translation is reduced.
Translation started by an internal ribosome entry site (IRES), which bypasses a number of regular eukaryotic initiation systems, can have a non-methinone start with GCU or CAA codons. [23] Mammalian cells can initiate translation with leucine using a specific leucyl-tRNA that decodes the codon CUG. This mechanism is independent of eIF2.
Another important eukaryotic initiation factor, eIF2, binds the tRNA containing methionine to the P site of the small ribosome. The P site is where the tRNA carrying an amino acid forms a peptide bond with the incoming amino acids and carries the peptide chain. The factor consists of an alpha, beta, and gamma subunit.
The tRNA bound in the E/E site then leaves the ribosome. The P/I site is actually the first to bind to aminoacyl tRNA, which is delivered by an initiation factor called IF2 in bacteria. [26] However, the existence of the P/I site in eukaryotic or archaeal ribosomes has not yet been confirmed.